A proof of Fermat's Last Theorem (p=

4)

H. Tohmori 2024.02.14

Abstract

If Fermat's equation with an exponent of prime p holds in arithmetic operation, it always holds in modulus operation by factor $(2 p+1)$ regardless of whether factor $(2 p+1)$ is prime or not.
But, even if Fermat's equation holds in modulus operation by factor $(2 p+1)$, it does not necessarily hold in arithmetic operation.
However, Fermat's equation never holds in arithmetic operations unless it holds in modulus operation by factor $(2 p+1)$.

Therefore, by proving that Fermat's equation with exponents of numbers 4 does not hold in modulus operations with prime numbers 5, it is proved that Fermat's equations do not hold in arithmetic operations.

As a result, Fermat's Last Theorem $(p=4)$ is proved.

1. Introduction

Fermat's equation with an exponent of number 4 is as follows. Natural number A, B and C are coprime.

$$
\begin{equation*}
A^{4}+B^{4}=C^{4} \tag{1.1}
\end{equation*}
$$

$\left(\frac{Q}{R}\right)$ is defined as remainder (modulo) when natural number Q is modulo operated by natural number R.
The notation in the center is correct, but it is written as shown on the right side.

$$
\left(\frac{Q S}{R T}\right)=\left(\frac{\left(\frac{Q}{R T}\right)\left(\frac{S}{R T}\right)}{R T}\right)=\left(\frac{Q}{R T}\right)\left(\frac{S}{R T}\right) \quad\left(\frac{Q \pm S}{R T}\right)=\left(\frac{\left(\frac{Q}{R T}\right) \pm\left(\frac{S}{R T}\right)}{R T}\right)=\left(\frac{Q}{R T}\right) \pm\left(\frac{S}{R T}\right)
$$

2. Fermat's equation with exponent of number

4 does not hold in modulus operations with

prime number 5.

2.1 Either of natural numbers A and B contain prime number 5

If none of the natural numbers A, B or C contain prime numbers 5, Fermat's equation does not hold in modulus operations with prime numbers 5.

$$
\left(\frac{A^{4}+B^{4}}{5}\right)=\left(\frac{A^{4}}{5}\right)+\left(\frac{B^{4}}{5}\right)=1+1=2 \quad\left(\frac{C^{4}}{5}\right)=1 \quad\left(\frac{A^{4}+B^{4}}{5}\right) \neq\left(\frac{C^{4}}{5}\right)
$$

When the natural number C contains prime numbers 5, Fermat's equation does not hold in modulus operations with prime numbers 5.

$$
\left(\frac{A^{4}+B^{4}}{5}\right)=\left(\frac{A^{4}}{5}\right)+\left(\frac{B^{4}}{5}\right)=1+1=2 \quad\left(\frac{C^{4}}{5}\right)=0 \quad\left(\frac{A^{4}+B^{4}}{5}\right) \neq\left(\frac{C^{4}}{5}\right)
$$

Therefore, either of the natural numbers A or B include prime number 5 .
Then, in the following, it is assumed that the natural number A contain prime number 5 .

2.2 Fermat's equation is factored

There are always natural numbers U and V that hold the following equations (2.2.1) and (2.2.2).

The natural numbers U, V, A and B are prime to each other.

$$
\begin{align*}
& C^{2}-B^{2}=U \tag{2.2.1}\\
& C^{2}+B^{2}=V \tag{2.2.2}
\end{align*}
$$

The following equation (2.2.3) holds.

$$
\begin{equation*}
\left(C^{2}-B^{2}\right)\left(C^{2}+B^{2}\right)=\left(C^{4}-B^{4}\right)=A^{4}=U V \tag{2.2.3}
\end{equation*}
$$

Then, since the natural numbers U and V are prime to each other, the following equation holds.

$$
\text { Natural numbers } X \text { and } Y \text { are prime to each other. }
$$

$$
U=X^{4} \quad V=Y^{4} \quad X Y=A
$$

Then, the following equations (2.2.4) and (2.2.5) hold.

$$
\begin{align*}
& C^{2}-B^{2}=U=X^{4} \tag{2.2.4}\\
& C^{2}+B^{2}=V=Y^{4} \tag{2.2.5}
\end{align*}
$$

Since natural number A contain prime number 5, either of
natural numbers X or Y includes prime number 5 .
However, even if either of the natural numbers X or Y contains prime number 5, any of the above equation (2.2.4) or (2.2.5) does not hold in the modulus operation with prime number 5 .
When natural number X contains prime number 5, the equation (2.2.5) does not hold in the modulus operation with prime number 5 .

$$
\left(\frac{C^{2}+B^{4}}{5}\right)=2\left(\frac{C^{2}}{5}\right)= \pm 2 \quad\left(\frac{Y^{4}}{5}\right)=1 \quad\left(\frac{C^{2}+B^{2}}{5}\right) \neq\left(\frac{Y^{4}}{5}\right)
$$

When natural number Y contains prime number 5, the equation (2.2.4) does not hold in the modulus operation with prime number 5 .

$$
\left(\frac{C^{2}-B^{2}}{5}\right)=2\left(\frac{C^{2}}{5}\right)= \pm 2 \quad\left(\frac{Y^{4}}{5}\right)=1 \quad\left(\frac{C^{2}+B^{2}}{5}\right) \neq\left(\frac{Y^{4}}{5}\right)
$$

Therefore, there are no natural numbers that hold Fermat's equation (1.1) with exponents of number 4 .

3 . Conclusion

Since Fermat's equation with exponent of number 4 does not hold in modulus operation with prime number 5, Fermat's equation never holds in arithmetic operation.

Therefore, there are no natural numbers A, B and C that hold Fermat's equation with exponent of number 4.

Thus, Fermat's last theorem $(p=4)$ has been proven.

4 . References

[1] "Sophie Germain." Encyclopaedia Britannica Online. Encyclopaedia Britannica Inc., 2013.
Web.
http://www.britannica.com/EBchecked/topic/230626/SophieGerm ain/2647/Additional-Reading.

